Applicability and applications of the method of fundamental solutions
نویسنده
چکیده
In the present work, we investigate the applicability of the method of fundamental solutions for the solution of boundary value problems of elliptic partial differential equations and elliptic systems. More specifically, we study whether linear combinations of fundamental solutions can approximate the solutions of the boundary value problems under consideration. In our study, the singularities of the fundamental solutions lie on a prescribed pseudo–boundary — the boundary of a domain which embraces the domain of the problem under consideration. We extend previous density results of Kupradze and Aleksidze, and of Bogomolny, to more general domains and partial differential operators, and with respect to more appropriate norms. Our domains may possess holes and their boundaries are only required to satisfy a rather weak boundary requirement, namely the segment condition. Our density results are with respect to the norms of the spaces C (Ω). Analogous density results are obtainable with respect to Hölder norms. We have studied approximation by fundamental solutions of the Laplacian, biharmonic and m−harmonic and modified Helmholtz and poly–Helmholtz operators. In the case of elliptic systems, we obtain analogous density results for the Cauchy–Navier operator as well as for an operator which arises in the linear theory of thermo–elasticity. We also study alternative formulations of the method of fundamental solutions in cases when linear combinations of fundamental solutions of the equations under consideration are not dense in the solution space. Finally, we show that linear combinations of fundamental solutions of operators of order m ≥ 4, with singularities lying on a prescribed pseudo–boundary, are not in general dense in the corresponding solution space.
منابع مشابه
F-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM
We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...
متن کاملThe method of fundamental solutions for transient heat conduction in functionally graded materials: some special cases
In this paper, the Method of Fundamental Solutions (MFS) is extended to solve some special cases of the problem of transient heat conduction in functionally graded materials. First, the problem is transformed to a heat equation with constant coefficients using a suitable new transformation and then the MFS together with the Tikhonov regularization method is used to solve the resulting equation.
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملFundamental Solutions of Dynamic Poroelasticity and Generalized Termoelasticity
Fundamental solutions of dynamic poroelasticity and generalized thermoelasticity are derived in the Laplace transform domain. For poroelasticity, these solutions define the solid displacement field and the fluid pressure in fluid-saturated media due to a point force in the solid and an injection of fluid in the pores. In addition, approximate fundamental solutions for short times are derived by...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 78 شماره
صفحات -
تاریخ انتشار 2009